Thứ Hai, 3 tháng 3, 2014
Giao động cơ học
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 1
cos( )?x A t
ω ϕ
= +
Câu a) Tìm :
10( / )
K
rad s
m
ω
= =
5( ) 5 cos 0
0;
0 0 sin 5( )
x cm A
t
v A cm
ϕ ϕ
ω ϕ
= = =
= ⇒ ⇒
= = − =
Vậy : x = 5cos10t (cm)
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 1
cos( )?x A t
ω ϕ
= +
Câu b) Tìm :
0 0 cos
0;
2
50( ) 50 sin
5( )
x A
t
v cm
A cm
π
ϕ
ϕ
ω ϕ
= =
= −
= ⇒ ⇒
= = −
=
Vậy :
5cos(10 ) ( )
2
x t cm
π
= −
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 1
cos( )?x A t
ω ϕ
= +
Câu c) Tìm :
5( ) 5 cos
0;
0 0 sin 5( )
x cm A
t
v A cm
ϕ ϕ π
ω ϕ
= − − = =
= ⇒ ⇒
= = − =
Vậy :
5cos(10 ) ( )x t cm
π
= +
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 1
cos( )?x A t
ω ϕ
= +
Câu d) Tìm :
3
5( ) 5 cos
4
0;
50( / ) 50 sin
5 2( )
x cm A
t
v cm s
A cm
π
ϕ
ϕ
ω ϕ
=
= − − =
= ⇒ ⇒
= − − = −
=
Vậy :
3
5 2 cos(10 ) ( )
4
x t cm
π
= +
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài tập 2
Khi treo một vật nặng 100 (g) vào đầu lò xo , người
ta thấy lò xo dãn ra 6,25 (cm) . Lúc vật cân bằng , ta
truyền cho nó vận tốc ban đầu 16π ( cm/s) theo
phương thẳng đứng hướng xuống . Lấy g =10 = π
2
( m/s
2
) .
a) Tìm chu kỳ dao động của vật và độ cứng của lò xo ?
b) Viết phương trình dao động của vật . Chọn gốc thời
gian lúc truyền vận tốc , chiều dương hướng xuống .
c) Ở những thời điểm nào vật qua vò trí có li độ 2 (cm).
d) Tính vận tốc của vật khi vật qua li độ nói trên .
e) Tính động năng của vật khi vật qua li độ nói trên .
f) Tính lực đàn hồi cực đại cà cực tiểu mà lò xo tác
dụng lên giá đỡ .
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 2
Câu a) T? K?
Xét vật ở vò trí cân bằng :
0
16( / )
mg
P F mg K l K N m
l
= ⇔ = ∆ ⇒ = =
∆
Mặt khác :
2 0,5( )
m
T s
K
π
= =
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 2
Câu b)
cos( )x A t
ω ϕ
= +
2
4 ( / )rad s
T
π
ω π
= =
0( ) 0 cos
0;
2
16 16 sin
4( )
x cm A
t
v
A cm
π
ϕ
ϕ
π π ω ϕ
= =
= −
= ⇒ ⇒
= = −
=
Vậy :
4cos(4 ) ( )
2
x t cm
π
π
= +
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 2
Câu c) t ?
2( ) 2 4cos(4 )
2
Khi x cm t
π
π
= ⇔ = −
5
1
24 2
cos(4 )
1
2 2
24 2
K
t
t
K
t
π
π
= +
⇔ − = ⇒
= +
với t > 0 ; K ≥ 0
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 2
Câu d) V ? Khi x = 2 ( cm )
Ta có :
2 2
2 2 2 2
2 2 2
1 ( )
x v
v A x
A A
ω
ω
= + ⇔ = −
Vậy :
8 3 ( / )v cm s
π
= ±
MỘT SỐ BÀI TẬP CƠ BẢN
MỘT SỐ BÀI TẬP CƠ BẢN
Bài giải 2
Câu e) W
đ
? Khi x = 2 ( cm )
Ta có :
2
2
1
0,0032( )
2
1
0,0128( )
W
2
= W - Wt = 0,0096 (J)
t
W Kx J
W KA J
• = =
⇒
• = =
đ
Đăng ký:
Đăng Nhận xét (Atom)
Không có nhận xét nào:
Đăng nhận xét